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1 Minkowski’s Inequality and The Marcinkiewicz Interpola-
tion Theorem

1.1 Minkowski’s inequality
Let f: X — C be measurable. For A > 0, set hq = ¢a0 f, ga = f — ha, where
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Recall Minkowski’s inequality:
Theorem 1.1 (Minkowski’s inequality). Let 1 < r < oo, and let f : X xY — [0,00].

Then
/y (/x |f($’y)‘rd/~‘<x)>l/r dv(y) > </x (/y f(a.y) du(y)>r dﬂ(w)>1/r-

1.2 The Marcinkiewicz interpolation theorem

Theorem 1.2 (Marcinkiewicz interpolation theorem). Let § be the set of measurable func-
tions on Y. Let 1 < pg,p1,q0,q1 < o0 be real numbers such that py < qo, p1 < q1, and
qo # q1. Let t € (0,1), and let p,q be defined as
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Assume that T : LPo(u) + LP(u) — F be sublinear and of weak type (qo,po) and (q1,p1)
(there are co,c1 > 0 such that if qo,q1 # 0, (aqo)\T(f))l/qO < coll fllp, and (aql)\T(f))l/ql <
c1l|fllp, ). Then the following hold:



1. T is strong type (p,q) (there exists B, > 0 such that ||Tf||q < Byl fllp for all f €
LP ().

2. If po < oo, then limy,_,,, Bplpo — p| < co. If p1 < oo, then limy, ,, Bp|p1 — p| < 0.
If po = o0, (Bp) remains bounded as p — po. If p1 = oo, (Bp) remains bounded as

p—p1-
Proof. We skip the proof in the case p; = pg. Let us assume qop, g1 < oo.
Consider
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We have
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So
lgall?e < po /A 8PN (B) dB.

We have )
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We also have
177 = [t hngpla)da =g [ (281 Ay (2) d29)
Since f = ga + ha, we get that |T'f| = |T(ga + ha)| < |Tga| + |Thal, So
Arf(28) < Arg, (B) + Arn, (B).

This lets us get

178 <201 /0 B (g (8) + Arna (8)) d.



Use the weak-type condition with f replaced by g4 and with f replaced by ha to
conclude that
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The above inequality holds for every A > 0. Let r > 0 and choose A = " (it will turn out
that r is the value we computed earlier). We will finish the proof next time. 0

We have
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